Skip to contents

All functions

nmfkc.ar.degree.cv()
Optimize lag order for the autoregressive model
nmfkc.ar.DOT()
Generate DOT language scripts for vector autoregressive models
nmfkc.ar.predict()
Forecast future values for NMF-VAR model
nmfkc.ar()
Construct observation and covariate matrices for a vector autoregressive model
nmfkc.ar.stationarity()
Check stationarity of an NMF-VAR model
nmfkc.class()
Create a class (one-hot) matrix from a categorical vector
nmfkc.cv()
Perform k-fold cross-validation for NMF with kernel covariates
nmfkc.denormalize()
Denormalize a matrix from \([0,1]\) back to its original scale
nmfkc.DOT()
Generate DOT language scripts for NMF models
nmfkc.ecv()
Perform Element-wise Cross-Validation (Wold's CV)
nmfkc.kernel.beta.cv()
Optimize beta of the Gaussian kernel function by cross-validation
nmfkc.kernel.beta.nearest.med()
Estimate kernel parameter beta from covariates
nmfkc.kernel()
Create a kernel matrix from covariates
nmfkc.normalize()
Normalize a matrix to the range \([0,1]\)
nmfkc.rank()
Rank selection diagnostics with graphical output
nmfkc()
Optimize NMF with kernel covariates (Full Support for Missing Values)
nmfkc.residual.plot()
Plot Diagnostics: Original, Fitted, and Residual Matrices as Heatmaps
plot(<nmfkc>)
Plot method for objects of class nmfkc
predict(<nmfkc>)
Prediction method for objects of class nmfkc