Package index
-
nmfkc.ar.degree.cv() - Optimize lag order for the autoregressive model
-
nmfkc.ar.DOT() - Generate DOT language scripts for vector autoregressive models
-
nmfkc.ar.predict() - Forecast future values for NMF-VAR model
-
nmfkc.ar() - Construct observation and covariate matrices for a vector autoregressive model
-
nmfkc.ar.stationarity() - Check stationarity of an NMF-VAR model
-
nmfkc.class() - Create a class (one-hot) matrix from a categorical vector
-
nmfkc.cv() - Perform k-fold cross-validation for NMF with kernel covariates
-
nmfkc.denormalize() - Denormalize a matrix from \([0,1]\) back to its original scale
-
nmfkc.DOT() - Generate DOT language scripts for NMF models
-
nmfkc.ecv() - Perform Element-wise Cross-Validation (Wold's CV)
-
nmfkc.kernel.beta.cv() - Optimize beta of the Gaussian kernel function by cross-validation
-
nmfkc.kernel.beta.nearest.med() - Estimate kernel parameter beta from covariates
-
nmfkc.kernel() - Create a kernel matrix from covariates
-
nmfkc.normalize() - Normalize a matrix to the range \([0,1]\)
-
nmfkc.rank() - Rank selection diagnostics with graphical output
-
nmfkc() - Optimize NMF with kernel covariates (Full Support for Missing Values)
-
nmfkc.residual.plot() - Plot Diagnostics: Original, Fitted, and Residual Matrices as Heatmaps
-
plot(<nmfkc>) - Plot method for objects of class
nmfkc
-
predict(<nmfkc>) - Prediction method for objects of class
nmfkc